

Soil carbon

Soil facts

- Top 1m of world's soil contains approx. 1,500 Pg C
- That's 1,500,000,000,000 t.....
- About 3 times that in the vegetation
- About twice that in the atmosphere
- How do we get more?
- Can we offset the 4.3 bn tons of annual emissions?

4 PER 1000 Carbon Sequestration in Soils For Food Security and the climate

The quantity of carbon contained in the **atmosphere** increases by **4.3** billion tons every year

> +4.3 bn tons carbon / year

CO₂ emissions

The world's **soils** contain **1 500** billion tons of carbon in the form of organic material

absorption of CO₂ by plants

storage of organic carbon in soils

If we increase by 4‰ (0.4%) a year the quantity of carbon contained in soils, we can halt the annual increase in CO₂ in the atmosphere, which is a major contributor to the greenhouse effect and climate change

increased absorption of CO₂ by plants :

farmlands, meadows, forests...

+4%o carbon storage in the world's soils

= more fertile soils = soils better able to cope with the effects of climate change Dec 2015 COP 21

Global soil carbon

Food and Agriculture Organization of the United Nations

Global Soil Organic carbon Map (v1.5.0) 2019

How stocks have changed with time

Crop and grazing around the world

Red: high

Blue: gains

LО PAGE

"Soil carbon debt of 12,000 years of human land use" due to excessive cropping and over grazing.

Demonstrates substantial losses of soil C for large parts of the world (133bnt)

Average stocks to 30cm

NZ	89 t C ha ⁻¹
Australia	30 t C ha⁻¹
USA	45 t C ha⁻¹
Global	62 t C ha ⁻¹

- NZ lost 3.3 t C ha⁻¹ in last 26 years where land use change occurred
- First priority is to hang on to what we have!

Soil carbon balance

For soil carbon to increase need:

- Inputs through photosynthesis greater than losses due to plant and soil respiration
- Plant carbon transferred to soil (via roots and leaf litter)
- Carbon stabilised in soil (unavailable to microbes)

Assessing soil C stock changes

Three approaches:

- Measuring net CO₂ exchanges in the field
- Measuring soil carbon stocks against a baseline
- Modelling changes (IPCC Tier 1,2 or 3)

Food and Agriculture Organization of the United Nations

LEAP guidelines for assessment

Measuring and modelling soil carbon stocks and stock changes in livestock production systems

National soil C <u>benchmarking</u> & <u>monitoring</u> programme

About 100 sites in each of five broad land use classes:

- Cropland
- Horticulture
- Dairy pasture
- Flat-rolling drystock
- Hill-country drystock

Sites randomly selected to avoid potential bias

Sampling to 0.6 m depth on a 4-year rolling schedule

- Benchmarking complete by 2023
- Three sampling points for all sites by 2031

Designed to be able to detect a change of 2 t/ha for each broad land use class, should such a change occur

S-MAPONLINE

Manaaki Whenua Landcare Research Scale: 1:50,000

Basemap data sourced from LINZ NZTopo Database. Crown Copyright Reserved.

Grassland management and soil carbon in NZ

Management	Impact on soil C	
Fertilisers	⇔ (P), 1 (N on infertile sites)	
Irrigation	⇔ or 🖊 (flat sites)	No change Increase
Drought	(in short-term)	Decrease
Manure / effluent		
Supplementary feed (maize)	🞓 (on site) 🖊 (off site)	
Sward renewal, tillage	(in short-term)	Schipper et al 2007
Mixed species	\Leftrightarrow or \clubsuit (more than 5 years)	Schipper et al. 2007 Schipper et al. 2014
Grazing intensity	🗇 or 🕇 (short, intense grazing)	Rutledge et al. 2015 Whitehead et al. 2018
Hill country grazing	 (based on small sample size) 	Mudge et al. 2021

PAGE 13

RESEARCH

MANAAKI WHENUA - LANDCARE

Regenerative agriculture

Plant surplus carbon

- Plant growth limited before photosynthesis
- Remove limitation increases above ground growth
- Disposal of surplus carbon via roots
- Stimulates soil microbial respiration
- Some carbon stabilised

Sequester soil carbon, redesign systems for surplus carbon

Conclusions

- Hang onto the soil carbon we have!
- Avoid unintended consequences (losses elsewhere, N₂O, water quality, etc)
- Gains possible, but magnitude site (soil) specific
- Modelling can show possible scenarios
- Measurements can confirm
- Regenerative systems a possible solution: need more evidence
- Need more evidence for magnitude of change with other management practices